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Microstructural Effects in Static and Dynamic Numerical Experiments

Bruce C. Trent
Los Alamos National Laboratory

ABSTRACT: A numerical analysls of cem2nted granular material has been
performed in order to better understand the relationship between the
individual components of a rock matrix and the macroscopic constitutive
response. A distinct eclement code was modified to allow interparticle
bondi:.g by incorporating appropriate elastic relationships. A modifled
Griffith criterion was utilized to initlate fracture within individual
bonds. A number of quasi-static and dynamic numerical experiments are
presented which show that realistic macroscopic behavior may be obtained
without the use of phenomenologlcal formulations such as plasticity.

1 NTRODUCTION

As computer programs become more sophisticated and the boundary value
prohlems become more complex, better descriptions of material behavior
are required. In order to answer the question of how a material re-
sponds, we must begin to discover why the material responds as it does.
[t is nv longer possible to rely solely on phenomenology to provide ac-
curate relationships without regard to the physies taking place. This is
particularly true for strongly nonlinecar materials such as alluvium. The
rcsearch described in this paper was conducted as a preliminary step to
the formulation of a general constlitutive law based only on micromechan-
feal ecovsiderations. The purpose |s to show how the propertlies of the
individual components of the rock matrix affect the overall response.

The material of interest is a cemented, granular material. Presumably,
this description could flt materials such as alluvium, sandstone and even
pranite where the strength and stiffness of the rock depend on the pack-
ing and structural characteristics off the gralng and bonds.

Most continuum numerienl modecs use some sort of plasticlty Lo achieye
nonlinear, Inelastlice behavior. The cap model, generalized by Sandler et
al. (1976), has been extensively used to modei both soll and rock.  Since
Lthe formulation requires up to twenty-nine dif'ferent curve-ritting para-
meters, laboratory data may be reproduced guite well.  This model,
unfortmmately, glv s no clue as to the taternal proceazien taking place
during deformation.  Schatz (1976) review:s several theories for fnelastice
behavior In porows peologle media and makes a distinetion between
phenomenologlieal and mechaniatUle formulatlons,

Thix paper will digensa the development and implementat fon off Inter-
particle honding into the distinet element method,  Specifice exampled off



quasi-static and dynamic numerical experiments will be presented. The
significance of the formation of multiple-particle clusters will be ad-
dressed in the context of observed macroscopic behavior. Finally, a sum-
mary Will provide an overview and indicate where the research is going.

2 ASSUMPTIONS AND SIMPLIFICATIONS

The distinct element method is a numerical procedure for the analysis
of assemblies of particles. Cundall and Strack (1979) describe how the
code alternates between the application of a force-displacement law at
each contact point and the equations of motion that translate and rotate
each particle is space. The program used in this study was a two-dimen-
sional version of the TRUBAL code, described by Cundall (1987). In two
dimensions the translation and rotation of two particles may be resolved
into three modes of relative motion shown in Figure 1 plus rigid body
motion. It is agsumed that the bonding material is linear and elastic
and has boundaries parallel to the line connecting the particle centers.
It is also assumed tha. all particles are of equal size although as will
be shown later, particle clusters may have any arbitrary shape and size.
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Simple Tension Rolling Torsion Shearing Torsion

Figure 1. Three modes of relative deformatlon in two dimensions.

The present study was performed with bonds that were relatively weal:
Wwith respect to the gralns. Thls results in highly inelastic benavior at
relatively low stress levelsg, typical of weakly cemented porous alluvium,
Figure 2 is a scanning ele:ztron micrograph of Yuma Alluvium.
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Figure 2. Photomicrograph of' Yuma Figure §.  Assumed gesmetry and
Alluvium from i depth of 14 m. dimensionless conatants for the
Magnification ia 46ox. interparticle bonding.

Notice the rounded shape o the particles and the orientat fon and shape
of the bond:n,  Thix matertal 1y quite eoable and da o eanily erashed by

hand,  Theae shape:s are dfdealized with civreles and steatght Hine segment s
fn the hqectionn that follow,



2.1 The elastic restoring equations

Analytic expressions for the restoring forces and moments resulting from
the motion shown in Figure ! were incorporated into the distinet element
code. Essentially, a special type of contact was defined and a second
force-displacement law was invoked such that additional forces and mo-
ments were applied to particles that were bonded together. Each bond is
defined by three dimensionless constants. The two disks shown in Figure
3 are cemented from y:=-aR to +aR with a vertical, centered crack running
from y=-8R to +BR. Only material above and below the crack contributes
to the restoring forces. The particles are separated by a distance of
26R. If E is the elastic (constrained) modulus and Au is the imposed
relative displacement, an expression for the relative stiffness may be
obtained by integrating the stress-strain relation for a fiber over the
length of the bond. If a = 1+8, the relation in simple tension is:

F/Au a
T M oe — arccos
/a‘ - 1

Figure 4 shows the stiffness recuction as a function of crack length for
different separation distances. Appropriate expressions were also ob-
tained for the other two modes ty Trent (1987) and Trent et al. (1987).

(a cos(w) - 1) w:arcsin(a).
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Figure 4, Relative stiffness in Figure %. Force-dlisplacement curves
simple tension for 5 separations. for one bond at 4 loading rates.

2.2 Bond fracture and crack growth

The code prescribes the strain during a timestep from the relative parti-
cle motion. Increasing tensile strain eventually leads to fracture, [T
the stress exceeds the tensile strength at the beginning of the Limestep,
fracture occurs, L ig assumed that the crack grows at a constant rate,
d. As the crack grows, the ~ffective modulus of the bond decreases so
the stress at the ond of Lthe timegtep may or may not exceed the strength.
The basis for Lthin analyxaia is given by Margolin ('984).

The eftective modulus is assumed to vary linearly wilth crack length,

() 3 E_ (v - 8sa),

0 max

which is nearly correct tor 5 greater than 0,05 a0 shown in Flgaee 4
The jneremental streain and neremencal steess o are vefated by
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If fracturc growth continues during the entire timestep, At, at speed d,
the ending stress can be evaluated using equations (2) and (3):

nel_ 8" d At o
() o= Byl - S - Sy ) (B v )
e

If on+1 exceeds the tensile strength, 0 _, the guess was correct and the
growth is exactly d Ar. If it is less Ehan 0_ then the crack arrested at
some intermediate time and growth occurred onEy for some fraction of the
timestep. If the initial stress is be*ow 0, then no crack growth occurs.
However, the strain rate may force o™ gregter cthan 0t resulting in
crack initiation.

This procedure provides exact compatibility within a timestep be-
tween the imposed strain conditions and the modulus reduction which
results from fracture at a finite rate. A stress criterion for failure
was modified atter Margolin (1984), incorporating additional tensile
stress due to rolling and shear due to shearing rotations:

) o; T TE
(5) °ht 3(7em) 2 2(1-ud)e

Ahere vV and E are the intact material Poisson's ratio and elastic
modulus, respectively, and T is the energy required to build a new sur-
face, a measurable material property. The crack radius (or length in one
dimension) is defined by the variable, c¢. This is valid for quasi-static
ard dynamic loading. 1If the strain rate is high enough, stresses within
the bonding will increase above the quasi-static value. This is shown in
Figure 5 where force-displacem-nt curves are shown for four di.7erent
loading rates. The value XA = v/d Is the ratio o! the particle velocity
to the crack speed. If the loading rate is slow (or the crack | opaga-
tion speed is fast) rupture is virtually instantaneous. For fast~ r
rates, very large internal forces can develop. The force-displacrment
relation for a single bond is shown in Figure 6. Notice unloading begins
prior to complete fracture and the slope of the force-displacement curve
after the crack stops growing is the effective modulus of the damaged
material. Compressive response is equivalent to undamaged material.
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3 QUASI-STATIC NUMERICAL EXPERIMENTS

The results of the quasi~static mumerical experiments are given in terms
of stress-strain relationships or pressure-volumetric compaction curves,
much like the results of laboratory tests. The stress tensor must be

ad justed due to the forces of the bonding on the particles. An analysis
similar to Cundall and Strack (1983) was performed so that the average
stress tensor is

N m
(6) .., = — [ b .
0V by e P
where V is the sample volume, F, is the force vector at particle contact
(or bond) c¢. located at x,, sumﬂed over all contacts (and bonds) m, for
all particles, N. The st*esses within the oonds add only a small cor-
rection since their volume is relatively insignificant.

3.1 Volumetric compaction

A random distribution of 244 particles was generated as illustrated in
Figure 7. All particles closer than one-hali radius were assumed to be
bonded but the internal crack length (2BR) varied from 20 to 90% com-
plete. The bond damage is reflected in the length of the line between
particle centers. Figure B shows the pressure-volumetric strain data.
This response is typical of alluvium, showing an initial elastic response
foilowed by significant permanent volume reduction. Finally, che curve
st.ffens, reflecting the mineral constituents. The total pressure is the
result of interpa.ticle contacts and the forces exerted by the bonds. At
first the pressure is due only to stresses in the bonds but as damage
takes place and particles come into contact, the interparticle forces
dominate the pressure. Figure 9 shows the final state. Bonds that are
not completely fractured form distinct clusters of two or more particles,
indicated by the numbers inside bonded grains.
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Figure 8. Pressure-volumetric strain Figure 9. Final particle and bond
curve showing the component:s. distribution and cluster numbers,
3. Shear behavior
Two shearing experiment s are presentod here on somples simi lar to the

diszteriimtion shown in Figure 7, The sample was first loaded to a mod-
orate mean stress and then sheared by applying equal oand opposite strain



rates to the periodic boundaries. The mean stress was maintained at a
constarit valve by a numerical servo-control. The pressure-volumetric
strain and shear stress-shear strain curves are shown in Figures '0 and
11. Notice the volume continues to decrease during shearing and the
shear stress gradually increases and levels out to a residual value.
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Figure 10. Pressure volume strain Figure 11. Shear stress-strain curve
curve for compza:tion and shear. showing rise to residual strength,

The next test was identical to the first except the sample was over
consolidated by applying a high confining pressure and then reducing the
pressure to the same value as the previous case. The pressure and shear
stress curves are shown in Figures 12 and 13, respectively. Here, volume
expands in shear and the shear stress climbs to a peak value, 25% greater
than the residual value in Figure 11 before dropping to this same level.
This increase in strength and then softening behavior seems to be related
to the orientation and distribution of multiple particle clusters formed
during the over consolidaticn process. Overconsolidation had no effect
on the shear strength for particles without bonding. M~re complete in-
formation on these tests is given by Trent (1987).
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4 DYNAMIC NUMERICAL EXPERIMENTS

The failure criterion given in equation 6 is independent of strain rate
and the formulation of the distinct element code is inherently dynamic.
A random distribution of particles was generated by allowing new parti-
cles to settle on top of others. Figure 14 shows the initial distribu-
tion and six regions in which the average particle velocity is calculat-
ed. The particles were bonded together and then loaded by applying a
constant downward (tensile) vertical velocity to the lowermost boundary
of particles. Figure 15 shows this step function and the response in
regions 2,3 and 6. Notice there is significant dispersion as the signal
moves upward. The e.astic modulus of the bonding material was increased
by a factor of 15 and the same boundary condition applied. Figure 16
shows that the resulting wave is much stronger and sharper.
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Figure 14. Random distribution of Figure 15. Velocity histories for
particles and averaging regions. soft bonds in regions 1,2,3 and 6.

The bonds in these two experiments were infinitely strong. If they are
allowed to break. the signal is strongly affected. Figure 17 shows the
average velocity histories in region z for strong, intermediate and weak
bonds. These experiments show that a signal propagating through a bond-
ed, porous medium is governed by the properties of the microstructure.
Addi;ional experiments and details are given by Trent (1987).
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5 SUMMARY ANC CONCLUSIONS

The results of several numerical experiments have been presented and in-
dicate that macroscopic phenomenology may be reproduced without the use
of plasticity. A generalized Griffith criterion was used in both quasi-
static anu dyramic regimes as thz2 only nonlinear faiiure mechanism. The
formation and distribution of multiple particle clusters plays an im-
portant role in determining the shear strength of porous, weakly cemented
granular material since the cluster distribution was siguificantly dif-
ferent and more¢ compact after overconsolidation. The stiffness and
strength of the individual bonds govern stress wave propagation charact-
eristics in this type of material. Present research is directed toward
the formulation of a general constitutive law that is based only on
micromechanical considerations.
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